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What is SIESTA?

(http://www.uam.es/siesta)

Is both a method and its computer program implementation to simulate
molecules and solids at the atomic scale.

Performs electronic structure calculations: solves numerically the quantum

mechanical equations that rules the behaviour of the electrons

Performs molecular dynamics simulations of physical and
chemical processes that occur at the atomic scale.

EVERYTHING FROM FIRST-PRINCIPLES OR AB-INITIO




Who are the members of the SIESTA core?

Collaboration between different Condensed Matter groups,
with a strong Spanish contribution

Emilio Artacho

Julian D. Gale

Alberto Garcia

Javier Junquera
Richard M. Martin
Pablo Ordejon

Daniel Sanchez-Portal

José M. Soler

José M. Cela’s group

University of Cambridge (United Kingdom)
Curtin University of Technology (Australia)
ICMAB (CSIC; Barcelona)

Universidad de Cantabria

University of lllinois at Urbana-Champaign
ICMAB (CSIC; Barcelona)

DIPC (CSIC; San Sebastian)

Universidad Autonoma de Madrid

Barcelona Supercomputing Center




International impact of SIESTA

Figura 1: Licencias Académicas de SIESTAv. 1.3
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Presence in the five
continents

Steadily growth of the number
of users

Figura 2: Distribucion geografica de Licencias
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More than 500 publications using the code

Figura 3: Publicaciones realizadas con SIESTA
(datos de 2005 solo hasta Septiembre)

Numero de Articulos

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
Ano

Review Impact factor Number of papers

Nature 32,182
Science 31,853
Nature Materials 13,531
Phys. Rev. Lett. 7,218
Phys. Rev. B 3,075




Most important reference followed in this lecture

IMsTITUTE OF PHYS1CS PUBLISHING JourNAL OF PHYsICS: CONDENSED MATTER

J. Phys.: Condens. Matter 14 (2002) 2745-2779 PII: S0953-8984(02)30737-9

The SIESTA method for ab initio order-/N materials
simulation
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Jose M Soler! . Emilio Artacho-, Julian D Gale”., Alberto {jﬂra;'mj',

Javier Junquera'’, Pablo Ordejon® and Daniel Sanchez-Portal’




Goal: Describe properties of matter from theoretical
methods firmly rooted in fundamental equations

Quantum Mechanics: Schrodinger equation (assuming no relativistic)

oU ({Z:},{Ra}; )

1
‘ ot

= HV ({fz}, {EQ}B t)

(
: S
Space coordinates r;

_)
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Electromagnetism: Coulomb’s law

For a pair of charged particles

2 - 5 ~ qiq;
H =1 + VCoulomb VCoulomb — = =
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A closer look to the hamiltonian:
A difficult interacting many-body system.

Kinetic energy operator for the electrons

Potential acting on the electrons
due to the nuclei

Electron-electron interaction

Kinetic energy operator for the nuclei

Nucleus-nucleus interaction




What are the main approximations?

Born-Oppenhaimer
Decouple the movement of the electrons and the nuclei.

Density Functional Theory

Treatment of the electron — electron interactions.

Pseudopotentials

Treatment of the (nuclei + core) — valence.

Basis set

To expand the eigenstates of the hamiltonian.

Numerical evaluation of matrix elements

Efficient and self-consistent computations of H and S.

Solve the secular equation

Supercells

To deal with periodic systems
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Difficulty: how to deal accurately with both the
core and valence electrons

First neighbour  Second neighbour
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Difficulty: how to deal accurately with both the
core and valence electrons

First neighbour  Second neighbour
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Core eigenvalues are much deeper than

valence eigenvalues
3p (-4.18)
/ | Valence
_— 3s (-10.83)

2p (-95.63)
2s (-139.08)
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1s (-1773.77)

Atomic Si




Core wavefunctions are very
localized around the nuclei
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Atomic Si




Core wavefunctions are very
localized around the nuclei
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Core electrons...
highly localized

15 (-1773.77
( } very depth energy

Atomic Si ... are chemically inert




Valence wave functions must be orthogonal
to the core wave functions

/ 3p (-4.18)
3s }-10_83;
2p (-95.63
2s (-139.08)

Core electrons...
highly localized

15 (-1773.77
( } very depth energy

Atomic Si ... are chemically inert




Fourier expansion of a valence wave function has a
great contribution of short-wave length

To get a good approximation we would have to use
a large number of plane waves.




Pseudopotential idea:

Core electrons are chemically inert
(only valence electrons involved in bonding)
Core electrons make the calculation more expensive

more electrons to deal with

orthogonality with valence = poor convergence in PW

Core electrons main effect: screen nuclear potential

Idea:
Ighore the dynamics of the core electrons (freeze them)

And replace their effects by an effective potential




The nodes are imposed by orthogonality
to the core states

*core region




Idea, eliminate the core electrons by
ironing out the nodes




Ab-initio pseudopotential method:
fit the valence properties calculated from the atom




A good starting point:
pseudopotentials tabulated in the SIESTA web page

% SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms) - Mozilla Firefox
Archivo  Editar Ver Historial Marcadores Herramientas Ayuda

@ c Ny l: 4 | http: ffwww,uam. es/departamentos ciencias fismateriac/siesta/

|8 Mas visitados /L, Clases ’ Getting Started |5 | Latest Headlines

Pseudopotential/Basis Database

This section contains links to pseudopotentials which were obtained from ABINIT'S Fritz-Haber-nstitute (FHI) pseudo database

The SIESTA team would like to thank the ABINIT team for sharing their pseudopotentials with the community.

‘Translation of ABINIT'S LDA pseudo database to SIESTA format
‘Translation of ABINIT'S GGA pseudo database to SIESTA format

webmaster:
siesta.web@uam.es

User contributed database

W3l :.TGT' WiC cns* Last modTfied: Apr 20. 2006

Terminado

iy Start [ Siests-school |4 Pseudopotentials ¥ SIESTA (Spanish Initi... [ e L] L 5:41 pM




Warning:

Before use a pseudopotential for production,
test it

Independent of SIESTA or any other code




What are the main approximations?

Born-Oppenhaimer

Decouple the movement of the electrons and the nuclei.

Density Functional Theory (talk by Notker Roesch)

Treatment of the electron — electron interactions.

Pseudopotentials

Treatment of the (nuclei + core) — valence.

Basis set

To expand the eigenstates of the hamiltonian.

Numerical evaluation of matrix elements

Efficient and self-consistent computations of H and S.
Solve the secular equation

Supercells

To deal with periodic systems




Most important reference followed in this lecture

phys. stat. sol. (b) 215, 809 (1999)
Subject classification: 71.15.Mb: 71.15.Fv: 71.24.+q; §1.3; 55; §5.11

Linear-Scaling ab-initio Calculations for Large
and Complex Systems

E. ArtacHo!) (a), D. SANCHEZ-PORTAL (b), P. ORDEION (c), A. Garcia (d).
and J. M. SOLER (¢)

PHYSICAL REVIEW B, VOLUME 64, 235111

Numerical atomic orbitals for linear-scaling calculations

. 1 - . - T -
Javier Junquera.. Oscar Paz.' Daniel Sanchez-Portal > and Emilio Artacho®

PHYSICAL REVIEW B 66, 205101 (2002)

Svstematic generation of finite-range atomic basis sets for linear-scaling calculations

Eduardo :—"|.11g].ﬂu:1.=1,1'2 Jose ML Scnlr:[,l Javier Lhu,ﬂquvera,3 and Emilio Artacho®




the many body problem reduced to a problem of
independent particles

One particle Kohn-Sham equation
1 o — o — o o —
—§V2 Tt Vers (7)| ¥ (r) = g7 ] (T)

e(;”f (7) = Vewt () + Vaartreen] + V., [nTv nl]

Goal: solve the equation, that is, find
- the eigenvectors

- the eigenvalues

Solution: expand the eigenvectors in terms of functions of known
properties (basis)

wi (F) — Z Cia basis functions
87




Three main families of methods
depending on the basis sets

Atomic sphere methods

Plane wave and grids

Localized basis sets




Order-N methods: The computational load scales
linearly with the system size

CPU
load

~ 100 N (# atoms)

G. Galli and M. Parrinello, Phys. Rev Lett. 69, 3547 (1992)




Locality is the key point
to achieve linear scaling

Large system

"Divide and Conquer"
W. Yang, Phys. Rev. Lett. 66, 1438 (1992)




Efficient basis set for linear scaling
calculations: localized, few and confined

Locality — Basis set of localized functions

~ 100 N (# atoms)

Regarding efficiency, the important aspects are:
- NUMBER of basis functions per atom
- RANGE of localization of these functions




Atomic orbitals:
advantages and pitfalls

¢Ilmn (77) — Rlln ( ‘ FI‘ )Ylm (72])

ADVANTAGES

* Very efficient (hnumber of basis functions
needed is usually very small).

- Large reduction of CPU time and memory

« Straightforward physical interpretation
(population analysis, projected density of
states,...)

» They can achieve very high accuracies...

DISADVANTAGES

+ ...Lack of systematic for convergence
(not unique way of enlarge the basis set)

 Human and computational effort
searching for a good basis set before
facing a realistic project.

* Depend on the atomic position (Pulay
terms).




Atomic orbitals:
a radial function times an spherical harmonic

ﬁllmn‘m\:Rlln ( ‘ FI‘ ) Yzm (fi)

Index of an atom Possibility of multiple
orbitals with the same I,m 7 =

Angular momentum




Numerical atomic orbitals

Numerical solution of the Kohn-Sham Hamiltonian for the
isolated pseudoatom with the same approximations
(xc,pseudos) as for the condensed system

1 d? [(I+1)

9 err

| W(T) RZ(T):€lRl(T)

72

This equation is solved in a logarithmic grid using the Numerov method

0 10,0 2000 300 400 500 600 700 800 900 1000 1100 120,
r (bohr)

Dense close at the origin where Light far away from the origin where
atomic quantities oscillates wildly atomic quantities change smoothly




In SIESTA: strictly localized numerical atomic orbitals

The Schrodinger equation for the isolated atom is
solved within a confinement potential that forces
the orbital to be extrivtly zero beyond a given rc.

The default in SIESTA

Horsfield 76

€1
Poremag =

confinement potential (Ry)

V=oc0o,r>a
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R, (bohr %)

Determined by the energy shift
V=0r<a

Fireball
O. F. Sankey and D. J. Niklewski, Phys. Rev. B 40, 3979 (89)

Empirically, it works very nice



Atomic orbitals:
Main features that characterize the basis

¢Ilmn (F) — Rlln ( ‘ FI‘ ) }/lm (72[)

Spherical harmonics:
well defined (fixed) objects

S




We use real spherical harmonics
for computational efficiency

(

sin (my) if m <0

Yim (6, 0) = Ciin ™ (cos0) -

cos (my) if m >0

Normalization factors Associated Legendre polynomials

=0

m=0

Pictures courtesy of Victor Luana




Atomic orbitals:
Main features that characterize the basis

¢Ilmn (F) — Rlln ( ‘ FI‘ ) }/lm (72[)

<4
Radial part: Spherical harmonics:

degree of freedom to play with well defined (fixed) objects

—-—— Frecatom

This work
----- Sankey S

Size: Number of atomic orbitals per atom
Range: Spatial extension of the orbitals

Shape: of the radial part




Convergence as a function of the size of the basis set:
Bulk Si

Cohesion curves PW and NAO convergence
20k | 2.50 | | T | | | T
i Si i
- 2.00 — —
L5
5 i i
> 5 1,50 - —
20 2,
S 1.01 > i i
o B i i
— 0.5 DZP (13} 17pp (22
0.50 — —
TZIP (27)
N - TZTPF (34) ]
0.0, . | . | . | . | . | 0.00 L L L,
Lattice Constant (A) (25) (71) (130) (201) (280) (369) (464) —m=PW basis size

Atomic orbitals show nice convergence with respect the size

Polarization orbitals very important for convergence (more than multiple-{)

Double- plus polarization equivalent to a PW basis set of 26 Ry



Convergence as a function of the size of the basis set:
Bulk Si

SZ Exp

A DZP basis set introduces the same deviations as the
ones due to the DFT or the pseudopotential approaches

SZ = single-{ P=Polarized PW: Converged Plane Waves (50 Ry)
DZ= doble- ¢ DP=Doble- APW: Augmented Plane Waves

polarized

TZ=triple-



Convergence as a function of the size of the basis set

Exp LAPW  Other PW PW

4,082 4.05P 4.07¢ 4.05
1732 198° 190° 191
3.812 ; - 4.19
4219 4.26° - 4.10
1529 147¢ 168
10.30%  10.40° 11.90
3.57° 3.54f 3.548 3.53
442" 470f 1362 466
737 10.13F 3.96° 8.90
5.432 5.41b 5.38¢ 5.38
992 06" 048 96
4,632 5.28h 5.34¢ 5.37
423 4.05" 3.95
6.97 9.2!
1.117 1.44]
3.60° 3.52°
138? 192°
3.50° 420K
4.95°
2.04°

. Junquera et al. Phys. Rev. B 64, 235111 (2001)




Range: the spatial extension of
the atomic orbitals

Order(N) methods = locality, that is, a finite range for matrix and overlap matrices

If the two orbitals are sufficiently far away
. Suu = (0 | 6u) = [ dFF &5 (7) 6 (7) =0

— (60 | H |y) = [ dif ¢} (7) gy, (7) =0

Neglect interactions: Strictly localized atomic orbitals:

Below a tolerance Vanishes beyond a given cutoff radius
Beyond a given scope of neighbours O. Sankey and D. Niklewski, PRB 40, 3979 (89)

Problem: introduce numerical instabilities Problem: accuracy and computational
for high tolerances. efficiency depend on the range of the basis
orbitals

How to define all the r_ in a balance way?



How to control de range of the orbitals in a balanced way:
the energy shift

2r dr? "

( 1 d I+ 1)

| W(T)) RZ(T):(EZ+5€Z)Rl(T)

22 ]

Energy increase = Energy shift
PAO.EnergyShift (energy)

Cutoff radius, r_, = position where each orbital has the node
A single parameter for all cutoff radii

The larger the Energy shift, the shorter the r_s
Typical values: 100-200 meV

E. Artacho et al. Phys. Stat. Solidi (b) 215, 809 (1999)




Convergence with the range

Bulk Si

equal s, p
orbitals radii

J. Soler et al., J. Phys: Condens. Matter, 14, 2745 (2002)

cutoff radii (a.u.)

More efficient

< More accurate




How to introduce the basis set in SIESTA
Effort on defining a systematics with minimum parameters

If nothing is specified: default

Basis size: PAO.BasisSize
Range of first-zeta: PAO.EnergyShift
Second-zeta: PAO.BasisType
Range of second-zeta: PAO.SplitNorm

Confinement: Hard well

Good basis set in terms of accuracy versus efficiency

The user has the freedom to play with these parameters

Recently: used variationally optimized basis set



As with the pseudopotentials,
there is a list of contributed basis sets

3 SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms) - Mozilla Firefox
Archive Editar Wer Historial Marcadores Herramientas  Ayuda

@ - c N, l 4 | httpeffwww, uam. es/departamentos fciendasfismateriac/siesta/

|&8] Més visitados £, Clases , Getting Started |5u | Latest Headlines

' SIESTA pseudopotential database

2.0y ?
= Ti: pseudopotentials

- e Upload a pseudopotential
o t o Upload a basis set for one of these psendopotentials
Available pseudopotentials:

Ti semicore states (3s and 3p) in valence (Author: Javier Junquera; created on 13/10/2005)

Flavour of the pseudopotential: Troullier-Martins. Exchange and correlation functional: LDA (Ceperley-Alder). Relativistic: ves. Core corrections: no. Valence reference
configuration: 3s2 3p6 3d2 40 (ionic configuration, ionic charge +2). Cutoff radius: 3s 1.30 bohr 3p 1.30 bohr 3d 1.30 bohr 4£ 2 .00 bohr

Available basis sets:

Ti semicore states (3s and 3p) in valence (Author: Javier Junquera; created on 13/10/2005)

Basis set optimized with Simplex for the bulk cubic cell of BaTiO3. The semicore states 3s and 3p are included in the valence. The quality of the basis is DZP for the
~ webmaster: valence (two radial functions for the 4s, and two radial functions for the 3d state, and one radial fuction for the 4p states), and SZ for the semicore states (one radial function
siesta.web@uam.es for the 3s and the 3p). This amounts to 19 basis functions per Ti atom.

D

Generated by psbase: (¢) Andrew Walkingshaw, 2003.

Cmu Vﬁ:csaJ Last modified: Apr 20, 2006 NERENE <;nce march 29, 2006

Terminado

F_ [
iy Start [ & siesta-school F'EI Pzeudopotentials ¥ SIESTA (Spanish Initi. .. L3 {J-"' e | R e R




What are the main approximations?

Born-Oppenhaimer

Decouple the movement of the electrons and the nuclei.

Density Functional Theory (talk by Notker Roesch)

Treatment of the electron — electron interactions.

Pseudopotentials

Treatment of the (nuclei + core) — valence.

Basis set

To expand the eigenstates of the hamiltonian.

Numerical evaluation of matrix elements

Efficient and self-consistent computations of H and S.
Solve the secular equation

Supercells

To deal with periodic systems




Goal: solve the one-particle Kohn-Sham
Schrodinger-like equation

Hy; (1) = Eg; (1)
Expansion of the eigenvectors in a basis of localized atomic orbitals

Y; (1) = Z G (T) Cui

where the coefficients c,; = (¢, | ;) , and ¢,, are the dual orbital of ¢, : (D | D)) = 6,

Introducing the expansion into the Kohn-Sham equation, we arrive to the secular equation

> (Hyy — EiSyy) € =0




The one-particle Kohn-Sham hamiltonian

H=T+Y V¥ + V7 (@) + V()

Transforming the semilocal pseudopotential form into the fully nonlocal separable
Kleinman-Bylander form

VPS _ Vlocal (’F) 4 VKB

e 1 Ni°°
Zval

J/bocal () — — VEB — Y Y Y |len vln lenl

L [=0 m=-—[ n=1

The standard Kohn-Sham one-electron hamiltonian might be written as

T+ Ve (7)Y VEB L VEH (7) + v (7)

Kinetic energy operator Hartree potential Exchange-correlation potential

(Assume LDA approach)

H (= — / (F)
M) = [ Em v @ = v (@)




Electronic charge density =
sum of spherical atomic densities +

deformation charge density (bonding)

p (1) = p™™ () + ép (7)

atom ( 7:*)

Populate basis function with

i . atom ) - &
appropriate valence atomic charges Pr exactly vanishes beyond”"; = mlax 7




The local part is screened by the potential
generated by an atomic electron density

atom ol =l
9= [ar L2 e A S [ S < e 4 v (3
/ri

|7 — |7 — 7'

Neutral atom potential Vanishes exactly ar r,

Vlocal ( 7—,»)

4 val
T

Vatom ( —>)

V (rydberg)

VNA( )—O

Potential outside the sphere
vanishes

(Gauss theorem =
generated by the total
charge inside the sphere
= 0 if neutral atom)




The hamiltonian computed in SIESTA,
combination of two and three center matrix elements

Two center integrals Three center integrals

A

H = T+VNL+VNA( 7)) + oV H (7 )+V‘”C(F)

(00 |V (P)] Dp)
<¢u ’ Y |¢u> ¢ (7?) Self-consistent
Basis orbitals =

£\

<¢V ’len len |¢M

Basis orbitals
Non self-consistent

KB pseudopotential projector

Computed in reciprocal space and tabulated Three-dimensional real space grid



Order-N methods rely heavily on the sparsity
of the Hamiltonian and overlap matrices

L Noasis 1 with 1 and 2
.
2 with 1,2,3, and 5
' " 3 with 2,3,4, and 5
I
Nbasis %’ 4 WIth 3,4 and 5
5 with 2,3,4, and 5

Sparse = many entrances of the ) )
matrix are zero Non-overlap interactions

Basis orbitals

\

p,v IS not strictly sparse
but only a sparse subset
IS heeded

S,y and H,, are sparse \

KB pseudopotential projector




Two center integrals are calculated
in Fourier space

Two center integrals (i. e. the overlap) have a form like

Sia(R) = (W [d) = | dF o (7) valr+ R)

Y1, 12 might be atomic orbitals, KB projectors or other functions centered on atoms

- 1 +00
S15(R) can be seen as a convolution: in1D [ *g = —— g(y) f(z—y)dy

27 J—
Arfken, Mathematical Methods for Physicist, Ch 15.5

Take the Fourier transform of one of the functions

— 1 7 =
. — —’Lk“r' —
V(R) = —75 [ ¢ (M e dr
(2)
The Fourier transform of a convolution in real space is a product in reciprocal space

Sia(B) = [ dk wi(Ryn(Rye "




Two center integrals are calculated
in Fourier space

Sia(R) = [ dk ¥ (R)pa(R)e =

For each pair of functions they are calculated and stored in a fine radial grid (2500 Ry)
as a function of I7;, up to the maximum distance R, = 7] + 75

The value at arbitrary distances can be obtained by accurate cubic spline interpolation
(once obtained, the fine grid does not suppose a penalty in execution time, since
interpolation effort is independent of the number of grid points).




The density matrix, a basic ingredient of SIESTA

Expansion of the eigenvectors in a basis of localized atomic orbitals
Y; (1) = Z Py () Cpi
v

where the coefficients c,; = (¢, | ;) ,and ¢, are the dual orbital of ¢, : (D | D)) = 6,

The electron density is given by

pm—z?mml?

Occupation of state 1;

Inserting the expansion into the definition of the density
p(F) =D Py, () Sy (T)
nv
where, with ¢;, = ¢, , the density matriX is defined

Puv = Z CLiiCiv
;

Control convergence SCF

Restart calculations




Three dimensional grid to compute
Hartree, exchange correlation and neutral atom potentials

O (7)

Find all the atomic orbitals that do not vanish at a given grid point

(in practice, interpolate the radial part from numerical tables)
Once the density is known, we compute the potentials EVERYTHING O(N)
p () — V=(r)

—

5p (7) = p (F) — Patoms (7) 5p (F) = SVH (7)




The Poisson equation is solved in
the real space grid by FFTs
VAVE () = —4mp (1)

Since the unit cell is periodic (naturally or artifically),
we can expand the density in a Fourier series

Zp ZGT?VH()—ZVH(G_’)GZ.@F
G
In reciprocal space, the dlfferentlal Poisson equation is nothing else than a division

Kk
Once the coefficients of the potential are known in reciprocal space, Fourier
transform back to real space

p (7)) 5 o(G) — VA(G) 5V (7)

FFT scales as N log()

However is cost is negligible and has no influence on the overall scaling properties.

Multigrid techniques (by Oswaldo Diéguez) coming soon



Generalized Gradient Approximation,
the derivative of the charge computed numerically

OESSA p ("), | Vp ()]
op (T)

VGG (7) =

Density gradient need not be provided, since they are
calculated numerically using the density at the grid points

Pi+1 — Pi—1 GG A
— j EQZC (
Lit1 — Lj—1

P1; P25 - - )
A finer grid is required for GGA

L. C. Balbas et al., Phys. Rev. B 64, 165110 (2001)



Three dimensional grid to compute
Hartree, exchange correlation and neutral atom potentials

Finally, we add together all the grid contributions and perform the integral

V(#) = VN + 6V (7) + V= (7

)V (7) ¢ (7) A

T

Volume per grid point




Fineness of the grid controlled by a single parameter,
the “MeshCutoff”

E..; : maximum kinetic energy of the plane waves that can be
represented in the grid without aliasing
®e o o o

e o o - 7212
JAN k. = — = E
® o o t= Ax 21,

Ax

In the grid, we represent the density = grid cutoff not directly comparable

with the plane wave cutoff to represent wave functions

(Strictly speaking, the density requires a value four times larger)



What are the main approximations?

Born-Oppenhaimer

Decouple the movement of the electrons and the nuclei.

Density Functional Theory (talk by Notker Roesch)

Treatment of the electron — electron interactions.

Pseudopotentials

Treatment of the (nuclei + core) — valence.

Basis set

To expand the eigenstates of the hamiltonian.

Numerical evaluation of matrix elements

Efficient and self-consistent computations of H and S.
Solve the secular equation

Supercells

To deal with periodic systems




Once the hamiltonian and the overlap matrices are build,
we have to solve the Schrodinger equation

~ R

H

v

Order-N Order-N3

Minimization of an energy functional Standard diagonalization techniques

Not valid for metals or “dirty” gap systems Both eigenvectors and eigenvalues available

CPU
load

Early
90’s

~ 100 N (# atoms)



If diagonalization, the generalized eigenvalue problem is
solved using standard mathematical libraries

4 ) 4 )

S

Serial: Parallel:

BLAS BLACS
LAPACK SCALAPACK

Freely available in

Most machine vendors have their own implementations
available for their own platforms (acml, mki,...).




The one-particle eigenstates are filled following the
“Aufbau” principle: from lower to higher energies

| n? (7) = Y f7 1407 (7))
-

8 Occupation numbers

The ground state has one (or two if spin independent)
in each of the orbitals with the lowest eigenvalues

A smearing of the electronic occupation might be done: |

Fermi-Dirac (OccupationFunction =)
ElectronicTemperature

Methfessel Paxton (OccupationFunction MP)




Locality of Wave Functions

\/
\_/

\ / Xq = 1N2 (¥, +V,)

Y, \\// \ | /
N

X, = 1N2 (V,-¥,)

occ\ _ occC Wannier functions (crystals)
2%C) =Ulyoe) e .
Localized Molecular Orbitals (molecules




Locality of Wave Functions

Energy:
E = <W1‘H‘W1> T <V/2‘H‘W2> = Ir,..(H)

Unitary Transformation: ﬂl//i>}% ﬂ)(i>}
E =Tr.(H)=(xH|x:) + {(2./H|2)

We do NOT need eigenstates!

We can compute energy with Loc. Wavefuncs.




Locality of Wave Functions

Exponential localization (insulators):

Wannier function in Carbon (diamond)
Drabold et al.




Locality of Wave Functions

Insulators vs Metals:

® Carbon (diamond)

1
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Q Aluminium
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Goedecker & Teter, PRB 51, 9455 (1995)




Order-N functionals

Kim, Mauri & Galli, PRB 52, 1640 (1995)

Idea: derive a functional that, when minimized, would
lead to the correct ground state energy, but with the
constraints would not need to be explicitly included

Constraints: orthonormalization of the one-electron wave function.

no computation of the inverse of the overlap matrix
Functional of Ordejon-Mauri

EOM = Trocc[ (2I-S) H ] # states = # electron pairs
Functional of Kim-Mauri-Galli

EKMG = Trocc+[ (2I-S) (H-nS) ] # states > # electron pairs




Minimization is done with respect a set of specially truncated wave
functions, allowed to be non-zero only in a particular region of space

Wi(r) = Zu Ciu (I)u(r)



Actual linear scaling

c-Si supercells, single-C

ol

1000 2000 2000 4000
Mumber of atoms

Single Pentium Il 800 MHz. 1 Gb RAM

132.000 atoms in 64 nodes
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10 10° 100 10
Mumber of atoms

®—® SCF cycles per MD step

Iterations per SCF cycle

750 1000
Number of Atoms




The Kohn-Sham equations must be solved self-consistently
The potential (input) depends on the density (output)

Initial guess

n' (), n* ()

Calculate effective potential

e?ff (F) — ‘/emt (’F) + VHartree [n] + Vg;ac [nTa nl]

Solve the KS equation
1 o = o (= o_ /0 (=
5 V2 Vi (7| w5 (7) = e (7

Compute electron density
[ / Output quantities
n? (7) =Y f7 47 (7)|? S
i

elf-consistent? Energy, forces,
stresses ...

out

max (pw — pjﬁ,) < DM.Tolerance




The Kohn-Sham total energy can be written as a sum of the
band structure (BS) energy + ‘double-count’ corrections

— Zn2<¢lz |]:[|¢z> = H,p,=Tr(Hp)

After SCF

Eigenvectors of the Hamiltonian

A

BN = 5 Hupun ~ / VI p (P dr+ [ %) = V= (] p (7) di 30
7 s

—

—~—
Functionals of the electron density and atomic positions




Kohn-Sham energy in SIESTA

=2 T Ekin
137

[}
=
0]

Enl

W

: Program’s energy decomposition (eV):
: Eions 380.802124
: Ena 114.848182
: Ekin 81.633888
: Enl 29.327240
: DEna 4.,386897
: DUscf = 0.250143
: DUext 0.000000
: Exc = -65.086299
: eta*xDQ 0.000000
: Emadel 0.000000
: Ekinion .000000
: Eharris 5.442072
: Etot 5.442072

: FreeEng 5.442072
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+ Sum extra terms if a net charge (Emadel), an external electric field (DUext),
Order-N solver (eta*DQ) are used, or if the nuclei are moving (Ekinion)




Atomic forces and stresses obtained by direct diferentiation
of the energy expression

KS
P — 8Eﬁ
OR;

8EKS

OnB = €ap = strain tensor

(%ag

“One piece of energy = one piece of force and stress”

Calculated as the analytical derivatives of the energy

Pulay corrections, related with the dependency of the basis set on
atomic positions, automatically included

Calculated only in the last self-consistent step




Recap: schematic flowchart of SIESTA

Read and digest input

Solve Schrodinger equation for the isolated atom
(generate the basis set)

Self consistent cycles

Compute efficiently [1,,,,, .S,
always done in Order-N

Two and three center integrals

7

Solve the secular equation

Order-N (insulators)

Z (Hop — LiSup) ¢ii =0 orgerns

Compute forces, stresses...




The efficiency of Siesta allows the treatment of
systems with an unprecedent number of atoms in the
simulation box

Electronic structure of the double helix of DNA

715 atoms in a work station Digital Alpha




Deformation of the charge density Iin the
peptidic bond of crambine

A Average of all the peptidic bonds

- '-‘H'_.rdrogen -
1 t

solid
state

communications
PERGAMON Solid State Communications 116 (2000) 395400

www.elsevier.com/locate/ssc
Electron density in the peptide bonds of crambin X-ray difraction DFT (Siesta)

M.V. Ferndandez-Serra®*, J. Junquera®, C. Jelsch®, C. Lecomte”, E. Artacho®

General results in good agreement with X-ray analysis

DZP basis set is accurate enough for the description



Large/complex materials: Metal Organic Frameworks
B.O. Cankurtaran, J.D. Gale & M.J. Ford, J. Phys. Cond. Mat., 20, 294208 (2008)

Large space of empty space inside Lighter and easy to functionalize
for gas adsorption than zeolite

0' »
4 2%
I
S [
J.’-"i.v 1
r -

f .: r "-'HJ_.;’ -;
P L=l S g
E P AN Y.

Largest calculation to date with SIESTA:
524,288 atoms -> 2,000,000 basis fns




Structure of monoatomic gold wires

NATURE [VOL 395|122 OCTOBER ltJuH|u-'ww.nnlu|'t*.u;un

Quantized conductance
through individual rows of
suspended gold atoms

Hideaki Ohnishi-, Yukihito Kondo* & Kunio Takayanagi-*

NATURE|VOL 395 |22 OCTOBER 1998 | www.nature.com

Retumn length (E‘\)

Formation and manipulation
of a metallic wire
of single gold atoms

A. l. Yanson*, G. Rubio Bollinger', H. E. van den Brom", ' —
N. Agraiti & J. M. van Ruitenbeek" I P Return distance

THR (N TR NN S SN SR N
12 16 20 24

0 4 8 12 16 20
Plateau length (A)

Conductance (2e%/h)

Electrode displacement {;&}



Structure of monoatomic gold wires

VOLUME 83. NUMBER 19 PHYSICAL REVIEW LETTERS 8 NOVEMBER 1999

Stiff Monatomic Gold Wires with a Spinning Zigzag Geometry

Daniel Sanchez-Portal.! Emilio Artacho.” Javier Junquera.> Pablo Ordejon.” Alberto Garcia,® and José M. Soler”
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Nanospintronics:

Nanotubes to transport spin

nature Vol 445(25 January 2007 | dei:10.1038/ nature05507

Transformation of spin information into large
electrical signals using carbon nanotubes

Luis E. Hueso'+, José M. Pruneda®t, Valeria Ferrari*t, Gavin Bl.n'r1e||]+,__ José P. Valdés-Herrera'”,
Benjamin D. Simons®, Peter B. Littlewood®, Emilio Artacho”, Albert Fert® & Neil D. Mathur'

Inject spins in a nonmagnetic material

Transport this spin over distances of
thousands of nm

Detect the spin at the other end of the
device with a large enough electric
signal

Magnetoresistance

MR = 2 Bar = Bp
Rp Rp




Nanospintronics:

Nanotubes to transport spin

natre Vol 445(25 January 2007 | dei:10.1038/ nature05507

Transformation of spin information into large
electrical signals using carbon nanotubes

Luis E. Hueso't, José M. Pruneda®~+, Valeria Ferrari*t, Gavin Burnell't, José P. Valdés-Herrera'”,
Benjamin D. Simons®, Peter B. Littlewood®, Emilio Artacho?, Albert Fert® & Neil D. Mathur'

Energy barrier at the CNT/LSMO interface, but the
ratio kinetic energy and the barrier width suggest
a relatively high transmission probability

CNT
1 LSMO+CNT

Carbon nanotube (CNT) not significantly altered when
contacted by La, ,Sr, ;MnO, (LSMO)

Bulk
O Surface

The LSMO surface is highly spin polarized

MR:ﬁzRAP_RP 61 % at 5 K

Rp Rp

Spin down

Previous devices limited to ~0.1-1 %

Energy (V)




First simulation on a realistic ferroelectric capacitor:
existence of a critical thickness for ferroelectricity

NATURE | VOL 422 |3 APRIL 2003 | www.nature.com/nature

Critical thickness for ferroelectricity
in perovskite ultrathin films

Javier Junquera & Philippe Ghosez

Physique, Université de Liege, Batiment B-5, B-4000

253 citas | SrTiO;




The critical thickness Is due to the incomplete
screening of polarization charge: the depolarizing fiel
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Depolarizing field:

Directaly proportional to the polarization.

‘Inversely proportional to the thickness.

J. Junquera and Ph. Ghosez, Nature 422, 506 (2003)




SIESTA availability

Free to academics

Free to Government labs engaged in academic &
ethical research

Small charge to industry
All get source code




SIESTA current status

* New versions about to be released
Massively parallel re-write (Barcelona Supercomputer Centre)
Van der Waals version
TranSIESTA included (PRB, 65, 165401 (2002))
LDA + U
Z-matrices
Broyden optimisation

SIESTA as a subroutine / CamposASE
(http://www.fysik.dtu.dk/campos/ASE)

Many enhancements / new properties




SIESTA next version...

New order N solvers

— Divide and conquer
- (J. Phys. Cond. Matter, 20, 294208 (2008))

— Li, Nunes, Vanderbilt
— Density matrix purification

Filterets

Time Dependent Density Functional Theory (TDDFT)
Spin-orbit

Response of periodic dielectrics to electric field
Calculation of optical properties

Simulation of STM images




Example of input

H,O molecule: example of a very simple input file
Go to the directory where the exercise of the H,O molecule is included

Inspect the input file, h20.fdf
Examine in detail the different input variables, more information at

and follow the link Documentations, Manual

Systemlame Water molecule Number of different
SystemLabel h2o .
species and atoms

NumberOfAtoms 3

NumberOfSpecies 2 present in the unit cell

#%block ChemicalSpeciesLabel

1 8 0 # Species index, atomic number, species label - - H

5 1 H List of different species
#endblock ChemicalSpeciesLabel

AtomicCoordinatesFormat Ang

#block AtomicCoordinatesAndAtomicSpecies

0.000 0.000 0.000 1 ags

0.757 0.586 0.000 2 Position of the atoms
-0.757 0.586 0.000 2

‘endblock AtomicCoordinatesAndAtomicSpecies

Example of a first-principles simulation: no input from experiment




Input of example

MgO an ionic solid that crystallizes in the rocksalt structure

Go to the directory where the exercise of the bands of MgO is included

Inspect the input file, MgO.fdf
SystemlName Magnesium Oxide Crystal |V|0I‘e information at the SieSta Web page
SystemLabel MgD and fO"OW the
Number0Of Atoms 2 link Documentations, Manual

NumberOfSpecies 2

Fplock Shemical Species Label The equilibrium lattice constant within

2 8 0O LDA has been computed for you...

hendblock Chemical_Species_Label

LatticeConstant 4.117 Ang ROCKsaIt StrUCture:
#block LatticeVectors

0.000 0.500 0.500 .
0.500 0.000 0.500 FCC lattice

0,500 0,500 0,000
Yendblock LatticeVectors

AtomicCoordinatesFormat Fracticonal

%“block AtomicCoordinatesAndAtomicSpecies
0.000 0.000 0.000 1
0.500 0.500 0.500 2

hendblock AtomicCoordinatesAndAtomicSpecies

+ a basis of two atoms

6 00 0 Sampling in k in the first Brillouin zone

0 0 6 0. to achieve self-consistency

%endblock kgrid_Monkhorst_Pack




Recap on SIESTA

First-principles method and Fortran-90 implementation code
Based on Density Functional Theory

Norm-conserving pseudopotential

Strictly localized Numerical Atomic Orbital as the basis set

Matrix elements of the Hamiltonian and Overlap matrices
always computed in Order-N.

Solution of the Hamiltonian, in Order-N or standard
diagonalization.

Freely available for the academic community

More information at:

http://personales.unican.es/junqueraj




