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What is SIESTA?
(http://www.uam.es/siesta)

Is both a method and its computer program implementation to simulate 
molecules and solids at the atomic scale.

Performs electronic structure calculations: solves numerically the quantum 
mechanical equations that rules the behaviour of the electrons

Performs molecular dynamics simulations of physical and 
chemical processes that occur at the atomic scale.

EVERYTHING FROM FIRST-PRINCIPLES OR  AB-INITIO



Who are the members of the SIESTA core?

Emilio Artacho University of Cambridge (United Kingdom)

Julian D. Gale Curtin University of Technology (Australia)

Alberto García ICMAB (CSIC; Barcelona)

Javier Junquera Universidad de Cantabria

Richard M. Martin University of Illinois at Urbana-Champaign

Pablo Ordejón ICMAB (CSIC; Barcelona)

Daniel Sánchez-Portal DIPC (CSIC; San Sebastián)

José M. Soler Universidad Autónoma de Madrid

José M. Cela’s group Barcelona Supercomputing Center

Collaboration between different Condensed Matter groups, 
with a strong Spanish contribution



International impact of SIESTA

Figura 1:  Licencias Académicas de SIESTA v. 1.3
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Figura 2:  Distribución geográfica de Licencias
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More than 500 publications using the code

1683,075Phys. Rev. B

467,218Phys. Rev. Lett.

213,531Nature Materials

231,853Science

432,182Nature

Number of papersImpact factorReview

Figura 3: Publicaciones realizadas con SIESTA 
(datos de 2005 sólo hasta Septiembre)
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Most important reference followed in this lecture



Goal: Describe properties of matter from theoretical 
methods firmly rooted in fundamental equations

Quantum Mechanics: Schrödinger equation (assuming no relativistic)

Coordinates of electron i comprise

Space coordinates

Spin coordinates

Electromagnetism: Coulomb’s law

For a pair of charged particles



A closer look to the hamiltonian:              
A difficult interacting many-body system.

Kinetic energy operator for the electrons

Potential acting on the electrons 
due to the nuclei

Electron-electron interaction

Kinetic energy operator for the nuclei

Nucleus-nucleus interaction



What are the main approximations?

Born-Oppenhaimer

Decouple the movement of the electrons and the nuclei.

Density Functional Theory
Treatment of the electron ─ electron interactions.

Pseudopotentials
Treatment of the (nuclei + core) ─ valence.

Basis set
To expand the eigenstates of the hamiltonian.

Numerical evaluation of matrix elements
Efficient and self-consistent computations of H and S.

Solve the secular equation

Supercells
To deal with periodic systems



What are the main approximations?

Born-Oppenhaimer

Decouple the movement of the electrons and the nuclei.

Density Functional Theory 
Treatment of the electron ─ electron interactions.

Pseudopotentials
Treatment of the (nuclei + core) ─ valence.

Basis set
To expand the eigenstates of the hamiltonian.

Numerical evaluation of matrix elements
Efficient and self-consistent computations of H and S.

Solve the secular equation

Supercells
To deal with periodic systems



Difficulty: how to deal accurately with both the 
core and valence electrons

CORE



Difficulty: how to deal accurately with both the 
core and valence electrons

CORE

VALENCE



Si atomic configuration: 1s2 2s2 2p6 3s2 3p2

core valence



Core eigenvalues are much deeper than 
valence eigenvalues

Atomic Si

Core

Valence



Core wavefunctions are very 
localized around the nuclei

Atomic Si



Atomic Si

Core wavefunctions are very 
localized around the nuclei

Core electrons…

highly localized

very depth energy

… are chemically inert



Valence wave functions must be orthogonal 
to the core wave functions

Atomic Si

Core electrons…

highly localized

very depth energy

… are chemically inert



Fourier expansion of a valence wave function has a 
great contribution of short-wave length

To get a good approximation we would have to use 
a large number of plane waves. 



Pseudopotential idea:

Core electrons are chemically inert 

(only valence electrons involved in bonding)

Core electrons make the calculation more expensive

more electrons to deal with

orthogonality with valence ⇒⇒⇒⇒ poor convergence in PW

Idea:

Ignore the dynamics of the core electrons (freeze them)

And replace their effects by an effective potential

Core electrons main effect: screen nuclear potential



The nodes are imposed by orthogonality
to the core states

core region



Idea, eliminate the core electrons by 
ironing out the nodes



Ab-initio pseudopotential method:
fit the valence properties calculated from the atom



A good starting point:                                          
pseudopotentials tabulated in the SIESTA web page



Warning:

Before use a pseudopotential for production, 
test it

Independent of SIESTA or any other code



What are the main approximations?

Born-Oppenhaimer

Decouple the movement of the electrons and the nuclei.

Density Functional Theory (talk by Notker Roesch)
Treatment of the electron ─ electron interactions.

Pseudopotentials
Treatment of the (nuclei + core) ─ valence.

Basis set
To expand the eigenstates of the hamiltonian.

Numerical evaluation of matrix elements
Efficient and self-consistent computations of H and S.

Solve the secular equation

Supercells
To deal with periodic systems



Most important reference followed in this lecture



the many body problem reduced to a problem of 
independent particles

Goal: solve the equation, that is, find

- the eigenvectors

- the eigenvalues

One particle Kohn-Sham equation

Solution: expand the eigenvectors in terms of functions of known 
properties (basis)

basis functions



Three main families of methods 
depending on the basis sets

Atomic sphere methods

Localized basis sets

Plane wave and grids



Order-N methods: The computational load scales
linearly with the system size

N  (# atoms)

CPU 
load

~ 100

Early

90’s

~ N

~ N3

G. Galli and M. Parrinello, Phys. Rev Lett. 69, 3547 (1992)



Locality is the key point
to achieve linear scaling

W. Yang, Phys. Rev. Lett. 66, 1438 (1992)

"Divide and Conquer"

x2

Large system



Locality ⇒⇒⇒⇒ Basis set of localized functions

Efficient basis set for linear scaling
calculations: localized, few and confined

Regarding efficiency, the important aspects are:
- NUMBER of basis functions per atom

- RANGE of localization of these functions

N  (# atoms)

CPU 
load

~ 100

Early

90’s

~ N

~ N3



ADVANTAGES
• Very efficient (number of basis functions 
needed is usually very small).

• Large reduction of CPU time and memory

• Straightforward physical interpretation 
(population analysis, projected density of 
states,…)

• They can achieve very high accuracies…

Atomic orbitals: 
advantages and pitfalls

DISADVANTAGES
• …Lack of systematic for convergence     
(not unique way of enlarge the basis set)

• Human and computational effort 
searching for a good basis set before 
facing a realistic project.

• Depend on the atomic position (Pulay
terms). 



Atomic orbitals:
a radial function times an spherical harmonic

z

y

x

Index of an atom

Angular momentum

Possibility of multiple 
orbitals with the same l,m



Numerical atomic orbitals

Numerical solution of the Kohn-Sham Hamiltonian for the
isolated pseudoatom with the same approximations

(xc,pseudos) as for the condensed system

This equation is solved in a logarithmic grid using the Numerov method

Dense close at the origin where 
atomic quantities oscillates wildly

Light far away from the origin where 
atomic quantities change smoothly



In SIESTA: strictly localized numerical atomic orbitals

Fireball
O. F. Sankey and D. J.  Niklewski, Phys. Rev. B 40, 3979 (89)

The default in SIESTA

a

Determined by the energy shift

Empirically, it works very nice

The Schrödinger equation for the isolated atom is 
solved within a confinement potential that forces 
the orbital to be extrivtly zero beyond a given rc.



Atomic orbitals: 
Main features that characterize the basis

s

p

d

f

Spherical harmonics:     
well defined (fixed) objects



We use real spherical harmonics 
for computational efficiency

Associated Legendre polynomialsNormalization factors

l = 0

m = 0

l = 1

m = -1 m = 0 m = +1

Pictures courtesy of Victor Luaña



Atomic orbitals: 
Main features that characterize the basis

s

p

d

f

Spherical harmonics:     
well defined (fixed) objects

Size: Number of atomic orbitals per atom

Range: Spatial extension of the orbitals

Shape: of the radial part

Radial part:                          
degree of freedom to play with



Convergence as a function of the size of the basis set: 
Bulk Si

Cohesion curves PW and NAO convergence

Atomic orbitals show nice convergence with respect the size 

Polarization orbitals very important for convergence (more than multiple-ζζζζ)

Double-ζζζζ plus polarization equivalent to a PW basis set of 26 Ry



4.635.285.375.345.345.335.234.914.844.72Ec

(eV)

98.8969696979798989689B
(GPa)

5.435.415.385.395.395.395.425.455.465.52a
(Å)

ExpAPWPWTZDPTZPDZPSZPTZDZSZ

SZ = single-ζζζζ

DZ= doble- ζζζζ

TZ=triple- ζζζζ

P=Polarized

DP=Doble-
polarized

PW: Converged Plane Waves (50 Ry)

APW: Augmented Plane Waves

Convergence as a function of the size of the basis set: 
Bulk Si

A DZP basis set introduces the same deviations as the 
ones due to the DFT or the pseudopotential approaches



Convergence as a function of the size of the basis set

J. Junquera et al. Phys. Rev. B 64, 235111 (2001)



Range: the spatial extension of
the atomic orbitals
Order(N) methods ⇒⇒⇒⇒ locality, that is, a finite range for matrix and overlap matrices 

Neglect interactions:

Below a tolerance

Beyond a given scope of neighbours

Problem: introduce numerical instabilities 
for high tolerances.

Strictly localized atomic orbitals:

Vanishes beyond a given cutoff radius

O. Sankey and D.  Niklewski, PRB 40, 3979 (89)

Problem: accuracy and computational 
efficiency depend on the range of the basis 
orbitals

How to define all the rc in a balance way?

If the two orbitals are sufficiently far away

= 0

= 0



Cutoff radius, rc, = position where each orbital has the node

A single parameter for all cutoff radii

The larger the Energy shift, the shorter the rcs

Typical values: 100-200 meV

E. Artacho et al. Phys. Stat. Solidi (b) 215, 809 (1999)

How to control de range of the orbitals in a balanced way: 
the energy shift

Energy increase ≡≡≡≡ Energy shift 

PAO.EnergyShift (energy)



Convergence with the range

J. Soler et al., J. Phys: Condens. Matter, 14, 2745 (2002) 

Bulk Si

equal s, p
orbitals radii

More efficient

More accurate



How to introduce the basis set in SIESTA                        
Effort on defining a systematics with minimum  parameters

If nothing is specified: default

Basis size: PAO.BasisSize DZP

Range of first-zeta: PAO.EnergyShift 0.02 Ry

Second-zeta: PAO.BasisType Split 

Range of second-zeta: PAO.SplitNorm 0.15

Confinement: Hard well

Good basis set in terms of accuracy versus efficiency

Recently: used variationally optimized basis set

The user has the freedom to play with these parameters



As with the pseudopotentials, 
there is a list of contributed basis sets 



What are the main approximations?

Born-Oppenhaimer

Decouple the movement of the electrons and the nuclei.

Density Functional Theory (talk by Notker Roesch)
Treatment of the electron ─ electron interactions.

Pseudopotentials
Treatment of the (nuclei + core) ─ valence.

Basis set
To expand the eigenstates of the hamiltonian.

Numerical evaluation of matrix elements
Efficient and self-consistent computations of H and S.

Solve the secular equation

Supercells
To deal with periodic systems



Goal: solve the one-particle Kohn-Sham 
Schrödinger-like equation

Introducing the expansion into the Kohn-Sham equation, we arrive to the secular equation

Expansion of the eigenvectors in a basis of localized atomic orbitals

where the coefficients                             , and        are the dual orbital of       : 



The one-particle Kohn-Sham hamiltonian

The standard Kohn-Sham one-electron hamiltonian might be written as

Kinetic energy operator Exchange-correlation potential

(Assume LDA approach)

Hartree potential

Transforming the semilocal pseudopotential form into the fully nonlocal separable 
Kleinman-Bylander form



Electronic charge density = 

sum of spherical atomic densities +

deformation charge density (bonding)

Populate basis function with 
appropriate valence atomic charges exactly vanishes beyond



The local part is screened by the potential 
generated by an atomic electron density

Neutral atom potential Vanishes exactly ar rc

CORE

VALENCE

Potential outside the sphere 
vanishes 

(Gauss theorem ⇒⇒⇒⇒
generated by the total  

charge inside the sphere      
= 0 if neutral atom)



The hamiltonian computed in SIESTA,     
combination of two and three center matrix elements

KB pseudopotential projector

Two center integrals

Computed in reciprocal space and tabulated

Basis orbitals

Basis orbitals

Non self-consistent

Three center integrals

Three-dimensional real space grid

Self-consistent



KB pseudopotential projector

Basis orbitals
Non-overlap interactions

1 2
3

4

5

1 with 1 and 2

2 with 1,2,3, and 5

3 with 2,3,4, and 5

4 with 3,4 and 5

5 with 2,3,4, and 5

Sµνµνµνµν and Hµνµνµνµν are sparse

ρρρρµνµνµνµν is not strictly sparse
but only a sparse subset 
is needed

Order-N methods rely heavily on the sparsity
of the Hamiltonian and overlap matrices

Sparse ≡ ≡ ≡ ≡ many entrances of the
matrix are zero

1 Nbasis

Nbasis

1



Two center integrals are calculated 
in Fourier space

can be seen as a convolution: in 1D

Arfken, Mathematical Methods for Physicist, Ch 15.5

Take the Fourier transform of one of the functions

The Fourier transform of a convolution in real space is a product in reciprocal space

Two center integrals (i. e. the overlap) have a form like

might be atomic orbitals, KB projectors or other functions centered on atoms



Two center integrals are calculated 
in Fourier space

For each pair of functions they are calculated and stored in a fine radial grid  (2500 Ry) 
as a function of     , up to the maximum distance  

The value at arbitrary distances can be obtained by accurate cubic spline interpolation 
(once obtained, the fine grid does not suppose a penalty in execution time, since 
interpolation effort is independent of the number of grid points). 



The density matrix, a basic ingredient of SIESTA  

The electron density is given by

Occupation of state 

Control convergence SCF

Restart calculations

Inserting the expansion into the definition of the density

where, with                  , the density matrix is defined 

Expansion of the eigenvectors in a basis of localized atomic orbitals

where the coefficients                             , and        are the dual orbital of       : 



Three dimensional grid to compute                            
Hartree, exchange correlation and neutral atom potentials  

Find all the atomic orbitals that do not vanish at a given grid point 

(in practice, interpolate the radial part from numerical tables)

Once the density is known, we compute the potentials EVERYTHING O(N)



The Poisson equation is solved in 
the real space grid by FFTs

FFT scales as N log(N)

However is cost is negligible and has no influence on the overall scaling properties.

Multigrid techniques (by Oswaldo Diéguez) coming soon

Since the unit cell is periodic (naturally or artifically), 
we can expand the density in a Fourier series

In reciprocal space, the differential Poisson equation is nothing else than a division

Once the coefficients of the potential are known in reciprocal space, Fourier 
transform back to real space



Generalized Gradient Approximation,                  
the derivative of the charge computed numerically

Density gradient need not be provided, since they are 
calculated numerically using the density at the grid points

A finer grid is required for GGA

L. C. Balbás et al., Phys. Rev. B 64, 165110 (2001)



Three dimensional grid to compute                            
Hartree, exchange correlation and neutral atom potentials  

Volume per grid point

Finally, we add together all the grid contributions and perform the integral



Fineness of the grid controlled by a single parameter, 
the “MeshCutoff”

Ecut : maximum kinetic energy of the plane waves that can be 
represented in the grid without aliasing

∆∆∆∆x

In the grid, we represent the density ⇒⇒⇒⇒ grid cutoff not directly comparable

with the plane wave cutoff to represent wave functions

(Strictly speaking, the density requires a value four times larger) 



What are the main approximations?

Born-Oppenhaimer

Decouple the movement of the electrons and the nuclei.

Density Functional Theory (talk by Notker Roesch)
Treatment of the electron ─ electron interactions.

Pseudopotentials
Treatment of the (nuclei + core) ─ valence.

Basis set
To expand the eigenstates of the hamiltonian.

Numerical evaluation of matrix elements
Efficient and self-consistent computations of H and S.

Solve the secular equation

Supercells
To deal with periodic systems



Once the hamiltonian and the overlap matrices are build, 
we have to solve the Schrodinger equation

=

Order-N Order-N3

Minimization of an energy functional

Not valid for metals or “dirty” gap systems

Standard diagonalization techniques

Both eigenvectors and eigenvalues available

N  (# atoms)

CPU 
load

~ 100

Early

90’s

~ N

~ N3



If diagonalization, the generalized eigenvalue problem is 
solved using standard mathematical libraries

Serial:

BLAS

LAPACK

Parallel:

BLACS

SCALAPACK

Freely available in http://www.netlib.org

Most machine vendors have their own implementations 
available for their own platforms (acml, mkl,…). 

=

N × N N × N N × 1N × 1



The one-particle eigenstates are filled following the 
“Aufbau” principle: from lower to higher energies

Occupation numbers

The ground state has one (or two if spin independent) 
in each of the orbitals with the lowest eigenvalues

A smearing of the electronic occupation might be done:

Fermi-Dirac (OccupationFunction FD)

ElectronicTemperature

Methfessel Paxton (OccupationFunction MP)



Locality of Wave Functions

Ψ1

Ψ2
χ1 = 1/√2 (Ψ1+Ψ2)

χ 2 = 1/√2 (Ψ1-Ψ2)

Wannier functions (crystals)

Localized Molecular Orbitals (molecules)

occocc
ψUχ =



Locality of Wave Functions

Energy:
)(2211 HHHHTrTrTrTrHHHHHHHHEEEE occoccoccocc=+= ψψψψψψψψψψψψψψψψ

Unitary Transformation:

2211)( χχχχχχχχχχχχχχχχ HHHHHHHHHHHHTrTrTrTrEEEE occoccoccocc +==

We do NOT need eigenstates! 

We can compute energy with Loc. Wavefuncs.

{ } { }ii χψ →



Locality of Wave Functions

Exponential localization (insulators):

6×10-21

7.6

Wannier function in Carbon (diamond)

Drabold et al.



Locality of Wave Functions

Insulators vs Metals:

� Carbon (diamond)

� Aluminium

Goedecker & Teter, PRB 51, 9455 (1995)



Order-N functionals
Kim, Mauri & Galli, PRB 52, 1640 (1995)

Idea: derive a functional that, when minimized, would 
lead to the correct ground state energy, but with the 
constraints would not need to be explicitly included

Constraints: orthonormalization of the one-electron wave function.

no computation of the inverse of the overlap matrix

EOM = Trocc[ (2I-S) H ]        # states =  # electron pairs

EKMG = Trocc+[ (2I-S) (H-ηηηηS) ] # states >  # electron pairs

Functional of Ordejon-Mauri

Functional of Kim-Mauri-Galli



φφφφµµµµ
ψψψψi

Rc
rc

ψψψψi(r) = ΣΣΣΣµµµµ ciµµµµ φφφφµµµµ(r)

Minimization is done with respect a set of specially truncated wave 
functions, allowed to be non-zero only in a particular region of space



Actual linear scaling

Single Pentium III 800 MHz. 1 Gb RAM

c-Si supercells, single-ζζζζ

132.000 atoms in 64 nodes



The Kohn-Sham equations must be solved self-consistently 
The potential (input) depends on the density (output)

Initial guess

Calculate effective potential

Solve the KS equation

Compute electron density
No

Output quantities

Energy, forces, 
stresses …

Yes
Self-consistent?



The Kohn-Sham total energy can be written as a sum of the 
band structure (BS) energy + ‘double-count’ corrections

Functionals of the electron density and atomic positions

After SCF

Eigenvectors of the Hamiltonian



Kohn-Sham energy in SIESTA

+ Sum extra terms if a net charge (Emadel), an external electric field (DUext), 
Order-N solver (eta*DQ) are used, or if the nuclei are moving (Ekinion)

Ekin

Enl

Eions

DEna

DUscf

Exc

Ena



Atomic forces and stresses obtained by direct diferentiation
of the energy expression

“One piece of energy ⇒⇒⇒⇒ one piece of force and stress”

Calculated only in the last self-consistent step

Pulay corrections, related with the dependency of the basis set on 
atomic positions, automatically included

Calculated as the analytical derivatives of the energy



Recap: schematic flowchart of SIESTA

Read and digest input

Solve Schrödinger equation for the isolated atom 
(generate the basis set)

Compute forces, stresses…

Self consistent cycles

Compute efficiently                      

always done in Order-N

Two and three center integrals

Solve the secular equation
Order-N (insulators)

Order-N3



The efficiency of Siesta allows the treatment of 
systems with an unprecedent number of atoms in the 
simulation box

Electronic structure of the double helix of DNA

715 atoms in a work station Digital Alpha



Deformation of the charge density in the 
peptidic bond of crambine

General results in good agreement with X-ray analysis

DZP basis set is accurate enough for the description

46 aminoacids; 642 atoms

X-ray difraction DFT (Siesta)

Average of all the peptidic bonds



Large/complex materials: Metal Organic Frameworks

Largest calculation to date with SIESTA:
524,288 atoms -> 2,000,000 basis fns

B.O. Cankurtaran, J.D. Gale & M.J. Ford, J. Phys. Cond. Mat., 20, 294208 (2008)

Large space of empty space inside 
for gas adsorption

Lighter and easy to functionalize 
than zeolites



Structure of monoatomic gold wires



Structure of monoatomic gold wires



Nanospintronics:

Nanotubes to transport spin

Magnetoresistance

Inject spins in a nonmagnetic material

Transport this spin over distances of 
thousands of nm

Detect the spin at the other end of the 
device with a large enough electric 
signal



Nanospintronics:

Nanotubes to transport spin

Carbon nanotube (CNT) not significantly altered when 
contacted by La0.7Sr0.3MnO3 (LSMO)

Energy barrier at the CNT/LSMO interface, but the 
ratio kinetic energy and the barrier width suggest 
a relatively high transmission probability

The LSMO surface is highly spin polarized

61 % at 5 K

Previous devices limited to  ∼ ∼ ∼ ∼0.1-1 %



First simulation on a realistic ferroelectric capacitor: 
existence of a critical thickness for ferroelectricity

253 citas

30nm

22.5 nm
5.4 nm

95 nm

SrTiO3

SrRuO3

SrRuO3
BaTiO3

SrRuO3

SrRuO3

BaTiO3

4 nm



The critical thickness is due to the incomplete 
screening of polarization charge: the depolarizing field

J. Junquera and Ph. Ghosez, Nature 422, 506 (2003)

tc ≈ ≈ ≈ ≈ 24 Å (6 celdas unidad)

Depolarizing field:

•Directaly proportional to the polarization.

•Inversely proportional to the thickness.



SIESTA availability

• Free to academics
• Free to Government labs engaged in academic & 

ethical research
• Small charge to industry
• All get source code



SIESTA current status

• New versions about to be released
– Massively parallel re-write (Barcelona Supercomputer Centre)
– Van der Waals version
– TranSIESTA included (PRB, 65, 165401 (2002))
– LDA + U
– Z-matrices
– Broyden optimisation
– SIESTA as a subroutine / CamposASE

(http://www.fysik.dtu.dk/campos/ASE)
– Many enhancements / new properties



SIESTA next version…

• New order N solvers
– Divide and conquer 

• (J. Phys. Cond. Matter, 20, 294208 (2008))

– Li, Nunes, Vanderbilt
– Density matrix purification

• Filterets
• Time Dependent Density Functional Theory (TDDFT)
• Spin-orbit
• Response of periodic dielectrics to electric field
• Calculation of optical properties
• Simulation of STM images



Example of input                                                
H2O molecule: example of a very simple input file

Go to the directory where the exercise of the H2O molecule is included

Number of different 
species and atoms 
present in the unit cell

List of different species 

Position of the atoms

Example of a first-principles simulation: no input from experiment 

Inspect the input file, h2o.fdf

Examine in detail the different input variables, more information at

http://www.icmab.es/siesta and follow the link Documentations, Manual



Input of example                                                     
MgO an ionic solid that crystallizes in the rocksalt structure

Go to the directory where the exercise of the bands of MgO is included

Rocksalt structure:

Inspect the input file, MgO.fdf

The equilibrium lattice constant within 
LDA has been computed for you…

FCC lattice

+ a basis of two atoms

Sampling in k in the first Brillouin zone 
to achieve self-consistency

More information at the Siesta web page 
http://www.icmab.es/siesta and follow the 
link Documentations, Manual



Recap on SIESTA

• First-principles method and  Fortran-90 implementation code
• Based on Density Functional Theory
• Norm-conserving pseudopotential
• Strictly localized Numerical Atomic Orbital as the basis set
• Matrix elements of the Hamiltonian and Overlap matrices 

always computed in Order-N.
• Solution of the Hamiltonian, in Order-N or standard 

diagonalization.
• Freely available for the academic community

More information at: http://www.uam.es/siesta

http://personales.unican.es/junqueraj


