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Aspectos Básicos

Modelo orbital monodeterminantal: Ψ = |φ1 . . . φN |
Procedimiento variacional lineal (LCAO): φi =

∑
µ ciµχµ

Base mínima: µ ≡ electrón. χµ centrado en átomos.
〈χν |χµ〉 = Sνµ es clave. Ejemplo: H+

2 .
I χ1 ≡ 1sa, χ2 ≡ 1sb: φ = 1√

2(1+S12)
(1sa + 1sb){α, β}. Ψ ≡ φ{α, β}.

¿Cómo definir parámetros de enlace?
I Repartiendo la carga: Análisis de Mulliken
I ρ(r1, r′1) = N

R
Ψ∗(r′1, . . . , rN)Ψ(r1, . . . , rN)dr2 . . . drN

I ρ(r, r) = ρ(r) =
P

i φ
∗
i (r)φi(r) =

P
µν Pµνχ∗ν(r)χµ(r)

I Pµν =
P

i ciµc∗iν .
I N =

R
ρ(r)dr =

P
µν PµνSνµ = Tr(PS) =

P
µ(PS)µµ.

I Na =
P
µ∈a(PS)µµ

PS =
1

2(1 + S)

„
1 1
1 1

«„
1 S
S 1

«
=

„
1/2 1/2
1/2 1/2

«
I Construyendo χ’s ortogonales, φi =

P
µ c′iµχ

′
µ

I Na =
P
µ∈a P′µµ = P̂a

R
ρ(r)dr =

R
a ρ(r)dr =

P
i

R
a dr φ∗i φi =

P
i Sa

ii
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Enlace ≡ Solapamiento
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2

Q = PS ≡ P′ idempotente: Q2 = Q: TrQ = TrQQ = · · · = TrQn = N

Partición en pares, tríos, ... de centros.
N =

∑
µ Qµµ =

∑
µν QµνQνµ. Qµν =

∑
i c′iµc′∗iν

Na =
∑
µ∈a Qµµ = TraQ =

∑
µ∈a,ν∈a QµνQνµ +

∑
µ∈a,ν /∈a QµνQνµ

Na = TraaQ2 +
∑

b 6=a TrabQ2 = Naa +
∑

b 6=a Nab

Na =
P

i Sa
ii Sa

ij =
P
µ∈a c′iµc′jµ

Naa =
P

ij(Sa
ij)

2

Nab =
P

ij Sa
ijS

b
ij
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Enlace ≡ Solapamiento ≡ Deslocalización
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Nab 6= 0⇔ c′iµc′iν 6= 0 en a, b⇔ electrones deslocalizados

Q =
(

1/2 1/2
1/2 1/2

)
.Naa = Q11Q11 = 1/4. Nab = Q12Q21 = 1/4.

2Nab = δab: Orden de enlace Wiberg-Mayer
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Enlace ≡ Solapamiento ≡ Deslocalización

Deslocalización multicéntrica en pie de igualdad.

H2+
3 : φ = 1√

3(1+2S)
(1sa + 1sb + 1sc) Q =

 1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3


a

bc

a

bc

a

bc

Na = 1/3 Nab = 1/32 = 1/9 Nabc = 2× 1/33 = 2/27

Deslocalización (enlace) de tres centros.
Importancia del número de canales de deslocalización.
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Enlace ≡ Solapamiento ≡ Deslocalización

Reconstrucción en el espacio real sencilla.
Invariante ante transformaciones orbitales

Espacio orbital Espacio real
N = TrQ N =

∫
ρ(r)dr =

∫
ρ(r, r)dr

Na = TraQ Na =
∫

a ρ(r, r)dr
N = TrQ2 N =

∫ ∫
ρ(r1, r2)ρ(r2, r1)dr1dr2

Naa = TraaQ2 Naa =
∫

a

∫
a ρ(r1, r2)ρ(r2, r1)dr1dr2

Nab = TrabQ2 Nab =
∫

a

∫
b ρ(r1, r2)ρ(r2, r1)dr1dr2

N = TraaaQ3 N =
∫ ∫ ∫

ρ(r1, r2)ρ(r2, r3)ρ(r3, r1)dr1dr2dr3
Naaa

Naab Multiplicidad de caminos: abc,acb
Nabc

Si usamos una partición exhaustiva del espacio real:
∫

a =
∫

Ωa

Transición suave Mulliken⇒ QCT

AMP (UniOvi) QCT Ov09 7 / 22



Generalizando ...

Los productos de ρ(ri, rj) = ρ(i, j) son cíclicos:
I ρ(1, 1) ρ(1, 2)ρ(2, 1) ρ(1, 2)ρ(2, 3)ρ(3, 1)

11 2

2

31

Reconocibles en la expansión Fock-Dirac de |Ψ2|.
I ρ(1, 2)ρ(2, 1) = ρ(1)ρ(2)− ρ2(1, 2) (1-Det)!
I ρ2(1, 2) = N(N − 1)

R
Ψ∗Ψ d3 . . . dN RDM de segundo orden.

I ρ(1) ≡ densidad, ρ(1, 2) ≡ densidad de parejas (ordenadas)
I ρ2(1, 2) 6= ρ(1)ρ(2):

F
R

d1d2 ρ2 = N(N − 1),
R

d1d2ρ(1)ρ(2) = N2 (Fermi, Coulomb).
I Vee =

R
d1d2 ρ2/r12, VC =

R
d1d2 ρ(1)ρ(2)/r12

I ρ(1)ρ(2)− ρ2(1, 2) = ρxc
2 (1, 2) (General)

I ρ(1, 2)ρ(2, 3)ρ(3, 1) = ρ(1)ρ(2)ρ(3)− 1
2 Ŝρ(1)ρ2(2, 3) + 1

3ρ3(1, 2, 3)
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Generalizando ... Todo adquiere sentido.

¿Qué significado tiene ρxc
2 (1, 2) = ρ(1)ρ(2)− ρ2(1, 2)?

I
R

d1d2 ρxc
2 = N =

R
d1d2 (ρ(1)ρ(2)− ρ2(1, 2)) = N2 − N(N − 1)

I Supongamos dos centros a y b.
I
R
≡
R

a

R
a +
R

a

R
b +
R

b

R
a +
R

b

R
b

ρxc
2 ρρ ρ2 ρρ− ρ2

R3 N N2 N(N − 1) N
aa Naa 〈Na〉2 〈Na(Na − 1)〉 〈Na〉 − 〈(Na − 〈Na〉)2〉
bb Nbb 〈Nb〉2 〈Nb(Nb − 1)〉 〈Nb〉 − 〈(Nb − 〈Nb〉)2〉
ab Nab 〈Na〉〈Nb〉 〈NaNb〉 −〈(Na − 〈Na〉)(Nb − 〈Nb〉)〉
ba Nba 〈Nb〉〈Na〉 〈NbNa〉 −〈(Na − 〈Na〉)(Nb − 〈Nb〉)〉

I Recordemos que Na = Naa + Nab
I Naa = Na si la varianza de Na se anula.
I Nab = 0 si la covarianza de Na y Nb se anula.
I Generalizable! Nabc ≡ 〈(Na − 〈Na〉)(Nb − 〈Nb〉)(Nc − 〈Nc〉)〉
I Hay enlace químico si hay fluctuación de N

I Entre dos centros→ bicéntrico. Entre muchos→ multicéntrico
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Generalizando ... Todo adquiere sentido.

Si no nos limitamos al modelo orbital (1Det):
I Todo permanece !
I ρxc

2 ya no es ρ(1, 2)ρ(2, 1):
F Sus propiedades permanecen.
F Incluye correlación electrónica.
F Q, Mulliken, simplificación de una teoría superior

I Las magnitudes de orden n que integran a N son extensivas:
F Cumulantes
F Generadores de las fluctuaciones (de orden n) de las poblaciones electrónicas

asociadas a centros.
F Invariantes ante transformaciones orbitales cualesquiera

Papel de la función de distribución del número de electrones (EDF)
I H2: dos centros, dos electrones. Tres posibilidades (2,0), (1,1), (0,2)

(2,0)  (1,1)  (0,2)(2,0)  (1,1)  (0,2)

p

(2,0)  (1,1)  (0,2)

0.5

1.0
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Funciones de Distribución (EDF)
Estadística de la población electrónica

Nuevas magnitudes probabilísticas: p(na, nb, . . . nm)
I Establecen la probabilidad de una distribución de e− en centros.
I p(na, nb, . . . nm) = N!

na!nb!...nm!

R
a d1

R
a d2 . . .

R
dN Ψ∗(1, . . . ,N)Ψ(1, . . . ,N)

I Determinan valores esperados con poblaciones⇒ magnitudes de enlace.
F Na =

P
na

nap(na)
F Naa = Na −

P
na

(na − Na)2p(na)
F Nab = −

P
na,nb

(na − Na)(nb − Nb)p(na, nb)

I H2

(2,0)  (1,1)  (0,2)(2,0)  (1,1)  (0,2)

p

(2,0)  (1,1)  (0,2)

0.5

1.0

Na = Naa = 1,Nab = 0 Na = 1,Naa = Nab = 0.5 Na = 1,Naa = 0,Nab = 1
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Funciones de Distribución (EDF)
Estadística de la población electrónica

Las EDFs para 1Dets son fáciles de obtener: (Sa
ij ≡

∑
µ∈a c′iµc′∗jµ)

p(na, nb, . . . , nm) =
∑
perm

∣∣∣∣∣∣∣∣
Sa

11 Sa
12 . . . Sm

1N
Sa

21 Sa
22 . . . Sm

2N
. . . . . . . . . . . .
Sa

1N Sa
1N . . . Sm

NN

∣∣∣∣∣∣∣∣

Modelo simplificado H2: Ψ = |φαφβ|, φ = (1sa + 1sb)/
√

2

p(2, 0) =

˛̨̨̨
1/2 0

0 1/2

˛̨̨̨
= 1/4, p(1, 1) =

˛̨̨̨
1/2 0

0 1/2

˛̨̨̨
× 2 = 1/2, p(0, 2) = 1/4

I Dos sucesos independientes: electrón α, electrón β.
I p = pα ⊗ pβ : pα(1, 0) = 1/2, pα(0, 1) = 1/2
I Distribución binominal: Nab = 0.5
I Orden de enlace ≡ índice de deslocalización: δab = 2Nab
I Si p(1, 0) 6= 1/2, enlaces polares, cuantificables.

Modelo simplificado AB: Ψ = |φαφβ|, φ = λχa + µχb, λ2 + µ2 = 1.

p(2, 0) =

˛̨̨̨
λ2 0
0 λ2

˛̨̨̨
= λ4, p(1, 1) =

˛̨̨̨
λµ 0
0 λµ

˛̨̨̨
× 2 = 2λ2µ2, p(0, 2) = µ4

I Dos sucesos independientes: electrón α, electrón β.
I p = pα ⊗ pβ : pα(1, 0) = λ2, pα(0, 1) = µ2

I Distribución binominal: Na = 2λ2, Nb = 2µ2

I δ = 4λ2µ2

I El orden de enlace disminuye, máximo si λ = 1/
√

2
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Pauli en acción

¿Cómo aparece el diagrama clásico de órdenes de enlace?
I He2: |σgασgβσuασuβ|, σg ≡ (1sa + 1sb)/

√
2, σu ≡ (1sa − 1sb)/

√
2

I α’s y β’s independientes: pα, procedente de σgασuα.

pα(2, 0) =

˛̨̨̨
1/2 1/2
1/2 1/2

˛̨̨̨
= 0 = pα(0, 2), pα(1, 1) = 2

˛̨̨̨
1/2 −1/2
1/2 1/2

˛̨̨̨
= 1

I No encontramos dos electrones α en a ó b. No hay deslocalización.
I Idéntico con los β: EDF monocomponente, δ = 0.
I Otra interpretación: dos electrones α no pueden describirse con 1sa.

He 2H2

1sa
1sb 1sa 1sb

σ

σ

g

u

I Regla de Aufbau que sustituye el concepto de orbital enlazante o
antienlazante: 1sa, 1sb lleno ≡ δ = 0

F funciones ocupadas⇒ electrones localizados.
I Si S 6= 0, deslocalización muy pequeña, δ ≈ 0.
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Pauli en acción

Li2: |1σg ¯1σg1σu ¯1σu2σg ¯2σg|
1σg,u ≡ (1sa ± 1sb)/

√
2, 2σg ≡ (2sa + 2sb)/

√
2.

pα(3, 0) =

˛̨̨̨
˛̨̨̨
˛̨

a a a
1/2 1/2 0
1/2 1/2 0

0 0 1/2
1σg 1σu 2σg

˛̨̨̨
˛̨̨̨
˛̨ = 0, pα(2, 1) = 2

˛̨̨̨
˛̨̨̨
˛̨

a b a
1/2 −1/2 0
1/2 1/2 0

0 0 1/2
1σg 1σu 2σg

˛̨̨̨
˛̨̨̨
˛̨ = 1/2

I Sobreviven p(2, 1) = p(1, 2): Dos e− localizados.
I Un e− como en el H2: δ = 1.

1sa 1sb

Li 2

σg

σg
2sa

2sb σu

Electrones localizados, deslocalizados.
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Enlaces multicéntricos
Una generalización inmediata

(3c,2e): H+
3 , Ψ = |φφ̄|, φ ≡ (1sa + 1sb + 1sc)/

√
3

Equivalentemente, bloque π de C3H+
3 , con s→ p.

I pα(1, 0, 0) = pα(0, 1, 0) = pα(0, 0, 1) = 1/3.
I δ = −2cov(na, nb) = 2/9, δ3 = 3cov3(na, nb, nc) = 6/27

b

ca

(3c,4e), Pimentel:C3H−5 , F−3 , Ψ = |φ1φ̄1φ2φ̄2|
I φ1 ≡ (a +

√
2b + c)/2, φ2 ≡ (a− c)/

√
2

I pα(1, 0, 1) = 1/2, pα(1, 1, 0) = pα(0, 1, 1) = 1/4
I δ = 1/4, 1/2, 1/2, δ3 = −6/32 b

ca
3/4

1/2

3/4

¿Qué distingue ambas deslocalizaciones tricéntricas?
I El tipo de fluctuación.

F +− ⇒ δ2 > 0
F + + ⇒ δ2 < 0
F +−− ⇒ δ3 > 0
F +−+⇒ δ3 < 0
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Clasificación del tipo de enlace

Los órdenes de enlace son trazas de productos de matrices Sa

I δ2
ab ≡ TrSaSb =

P
ij Sa

ijS
b
ji

I δ3
abc ≡ TrSaSbSc =

P
ijk Sa

ijS
b
jkSc

ki

Pueden clasificarse según el tipo de productos de S

Bicéntricos: I (i = j, directo) y II (i 6= j, indirecto biorbital)

a bab
i i

j

Tricéntricos: I(i = j = k,directo), II(i = j 6= k, ind. biorbital), III (i 6= j 6= k,
ind. triorbital)

I (3c,2e): Fundamentalmente I.
I (3c,4e): Fundamentalmente II.
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Legoquímica
Cómo construir una molécula por bloques enlazantes

Una molécula está compuesta por conjuntos de electrones
cuasi-independientes:

I Electrones localizados (cores, pares solitarios): p1
I Enlaces bicéntricos : p2
I Enlaces multicéntricos : pn

la EDF es el producto directo de todas estas componentes: p ≡
⊗

i pi

Aproximación excelente en la mayoría de los casos: H2O (Ha-Ob-Hc)
I Dos enlaces bicéntricos (dos e−α, β): ¿tres funciones?

F Imposible: p de dos e− α en O nula con una sóla primitiva centrada en O.
F necesitamos dos funciones equivalentes (ortogonales) en O, b, b′
F φ1 = λa + µb, φ2 = λc + µb′
F p1

2(a, b)α: p(1, 0) = λ2, p(0, 1) = µ2.
F p2

2(c, b)α: p(1, 0) = λ2, p(0, 1) = µ2.
F p4(a, b, c)α = p1

2(a, b)α ⊗ p2
2(c, b)α

F p4(1, 1, 0) = p4(0, 1, 1) = λ2µ2,p4(0, 2, 0) = µ4, p4(1, 0, 1) = λ4.
I Fácil comprobar que δac = δ3 = 0.

Análisis inverso. De Ψ⇒
⊗

i pi
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Orbitales naturales adaptativos

Las densidades cumulantes satisfacen recurrencias:∫
di ρi

c(1, 2, . . . , i) = ρi−1
c (1, 2, . . . , i− 1)

Integrando a un centro, definimos densidades proyectadas:∫
a d2 ρxc(1, 2) = ρa(1).

I
R

d1 ρa(1) = Na.
I
P

a ρa = ρ⇒ Partición atómica de la densidad.
I
R

a d1 ρa(1) = Naa.
R

b d1 ρa(1) = Nab

I ρa(1) =
P

ij φ
∗
i (1)Aa

ijφj(1) = φtAaφ⇒ diagonalizando Aa ⇒ ρa =
P

i na
i |η1

i |2
I
P

i na
i = Na. Orbitales naturales del centro a.

I Para 1Dets Aa = Sa.
I Orbitales moleculares que contribuyen a la población de a

Similar para ρ3
c .

I
R

a

R
b d2d3 ρ3

c(1, 2, 3) = ρab(1): Partición de parejas de ρ.
R

d1ρab(1) = Nab

I ρab = φtAabφ =
P

i nab
i |η2

i |2
I
P

i nab
i = Nab. Para 1Dets Aab = SaSb.

I Orbitales moleculares que contribuyen al enlace (bicéntrico) de a y b
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orbitales naturales adaptativos
Ejemplos

Li2: |1σg ¯1σg1σu ¯1σu2σg ¯2σg|
1σg,u ≡ (1sa ± 1sb)/

√
2, 2σg ≡ (2sa + 2sb)/

√
2.

Sα,a =

∣∣∣∣∣∣∣∣
1/2 1/2 0
1/2 1/2 0

0 0 1/2
1σg 1σu 2σg

∣∣∣∣∣∣∣∣ , Sα,b =

∣∣∣∣∣∣∣∣
1/2 −1/2 0
−1/2 1/2 0

0 0 1/2
1σg 1σu 2σg

∣∣∣∣∣∣∣∣
Diagonalizando Sa: n = (1, 0, 1/2), η = (1sa, 1sb, 2σg)

Sα,aSα,b =

∣∣∣∣∣∣∣∣
0 0 0
0 0 0
0 0 1/4

1σg 1σu 2σg

∣∣∣∣∣∣∣∣
Diagonalizando SaSb n = (0, 0, 1/4), η3 = 2σg.
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orbitales naturales adaptativos
Ejemplos

O2 Hartree-Fock. Resultados QCT

x2
0.010

x2
0.010

0.058
x4

β− set setα−

x2

0.500 0.500

0.500

δ
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El papel de la correlación electrónica

Pauli (correlación de Fermi) localiza electrones del mismo espín.
La correlación de Coulomb localiza electrones de espín opuesto.

I Extingue fluctuaciones

0.00

0.20

0.40

0.60

0.80

1.00

-1 0 1

p

nA-<nA>

H2

HF
CAS

CI

δ(corr) ≈ 0.85

0.00

0.20

0.40

0.60

0.80

1.00

-4 -3 -2 -1 0 1 2 3 4
p

nA-<nA>

N2

HF
CAS

δ(corr) ≈ 1.99
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Resumen, Perspectivas, Bibliografía

Se puede realizar una transición simple desde un modelo OM hacia otro
QCT.

I Rigurosa
I Constructiva
I Utilizando intuiciones químicas

Con enormes terrenos inexplorados.
Una vez instalados en QCT

I Conexiones energéticas simples (IQA)

Bibliografía sucinta
I J. Chem. Theory Comput. 1, 1096 (2005); J. Comput. Chem. 28, 161 (2007);
I J. Phys. Chem. A 111, 1084 (2007); Faraday Discuss. 135, 423 (2007);
I J. Chem. Phys. 126, 094102 (2007); Phys. Chem. Chem. Phys. 9, 1087

(2007); J. Chem. Phys. 127, 144103 (2007);
I J. Chem. Phys. 131, 124125 (2009).

AMP (UniOvi) QCT Ov09 22 / 22


	Cómo cambiar una imagen OM por otra ER
	Aspectos básicos
	Solapamiento
	Generalización

	Funciones de Distribución
	EDFs
	Enlace Multicéntrico

	Orbitales naturales Adaptativos
	Correlación electrónica
	Resumen

